Sunday, November 8, 2015

BFPM Practicum

a.


b.


c. First, our group measured the angles of the wire and drew a picture of the hanging object. Next, we drew free body diagrams to understand the forces involved. In our diagrams, we wrote the forces, then added the angle measurements, and then calculated the force of each Ft. We used Sin to solve for Ft on each wire and added the amounts together to get a total weight of 2.51N.

Tuesday, October 6, 2015

Texting While Driving Corrections

Texting While Driving Data:

Prediction: We predict the car will travel 0.02815 in 2.38 seconds at a constant velocity of 45 m/h.

distance = 45 miles = 45 miles = x miles 
time           1 hour        60 min      1 min

60x = 45       x= .75 miles per 7 min
60      60

.75 miles =  75 miles
1 min             60 sec

After setting up a proportion and canceling the units until it was miles/ seconds, we cross multiplied the equation to find the variable x, which represents miles:

75 miles  =  x miles        x= 0.02875
60 sec          2.3 sec

Therefore, in 2.3 secounds the car would travel about .03 or .02875 seconds at a constant velocity of 45 m/h.


This motion map describes the cars motion because it shows that it is moving at a constant velocity. The velocity vs. time graph shows how the car moves at a constant velocity, from an origin of 45 m/h. The position vs. time graph shows how the cars position changes, but the distance per second is consistent throughout the movement of the car.



















Thursday, October 1, 2015

Nikki's Blog Post Unit 1

Unit One Summary:
Constant Velocity Particle Model

What did I learn from this unit?
This unit taught how to identify relationships on a graph, read a graph, and make predictions based on the data on a graph. I also learned how to identify relationships in an experiment, and be able to manipulate data using my independent variable and excel. I also learned how to create and read motion maps, create a graph with excel, position verses time graphs, and identify the factors in a graphs. These factors include velocity, time, position, distance verses displacement, and variables. In this blog, I will convey the skills we have learned and examples of how I used them.

Constant Velocity Particle Model Example Questions and Analysis:








If the curve is straight it indicates constant velocity and a linear relationship. In the picture to the left, I solved to find the velocity of the line by using the equation rise. 
                                   run

Then, to find the mathematical equation to describe the object's motion I used:
X= Vt + Xo

I plugged in the variables from the graph that I knew and solved for X. 
How to Make a Line with Excel:
1.     Enter data in columns.
2.     Highlight data
3.     (In insert menu) insert chart
4.     Choose XY on the marked scatter.
5.     Add trend line and equation on the graph.

Motion Map (Diagrammatic):
The motion map represents the velocity, position, and acceleration of an object at equally spaced times. The purpose of the motion map is to show you these factors at various time reading in a visual representation other than a graph.

Here is an example of a motion map. This map displays an object moving at a constant velocity. 



Velocity:
Velocity is the rate of change of an object.

V = slope     D= Velocity
T                  T

Position vs. Time Graphs:
The position verses time graph helps distinguish the displacement and total distance of an object. It also reveals key information about the velocity of the object. For example, a steep slope means a faster velocity. A straight (linear) slope means a constant velocity. A curved line means the velocity changes over time. Here is an example of a constant slope:




Equation of a graph:

X= Vt + X0

X0= position
V= velocity
T= time

The equation X= Vt + X0 describes the motion of an object.This equation can also be used to predict the position of an object at a certain point.

Path length:
The path length in the total distance something traveled.

Independent variable:
The variable over which the experimenter has complete control (x axis).

Dependent variable:
The variable that responds to change in the independent variable (y axis).

Displacement:
The movement of something from its original position; difference in position from origin and final point.

Speed:
Speed is how fast the object is going. A faster speed can be identified by a steeper slope on a graph.

Describe the Motion of the Object:
The motion of the graph can be read on a motion map, position verses time graph, or the constant velocity particle model. The image below shows an example of how all the same information can be displayed in the different models.













Shapes on a Graph: By being able to identify these shapes and trends on a graph it improved our ability to interpret graphical relationships and express it in written form. 








Connections:

This unit can be applicable in everyday life because it is important to understand graphs and charts. The ability to understand and make a graph is crucial in business. It is a required skill for making predictions and analyzing data. Also, these skills are applicable in our every day life. Everywhere we go, we are in a specific position. Although the starting point could be anywhere, it can still be displayed on a graph. We consider distance vs. time every day when calculating how long it will take to arrive at a specific point of location. People often try to predict these times themselves, but it could easily be predicted using the CVPM. For me personally, I could use the CVPM to measure how fast I run when exercising. I can use the CVPM to see if I am staying at a constant speed, of if my speed decreases sporadically.